
Hans-Petter Halvorsen

https://www.halvorsen.blog

Industrial Datalogging
and Monitoring

C# Project

Industrial Datalogging and Monitoring

Data Logging Application

Data
Monitoring
Application

Database

DAQ
Device

Data
Data

Data
Management
Application

Sensors DAQ Modules
RFID

Temperature Sensors

OBD Hardware

Cloud

Industrial Datalogging and Monitoring

Table of Contents
1. System Overview
2. System and Hardware Overview

– System #1 - TC-01 Temperature Sensor
– System #2 - USB-6008 DAQ Device
– System #3 - RFID System
– System #4 - OBD Car System

3. Database
4. Applications

– Data Management Application
– Data Logging Application
– Data Monitoring Application

5. UML
6. C# Code
7. Final Delivery

System Overview

Industrial Datalogging and Monitoring

Table of Contents

https://www.halvorsen.blog/documents/teaching/courses/csharp

https://www.halvorsen.blog/documents/teaching/courses/csharp

• The system should log and monitor data from a data collection module
(either using a TC-01, an USB-6008, an RFID Reader or an OBD module).

• The system must log data to file and database.

• The system should be module-based so that you have different modules
for data configuration/management, data logging and monitoring.

• This document contains the overall specifications for the Industrial
Datalogging and Monitoring System given by the customer, the detailed
specification should be made by you because the customer has no skills
in programming.

• The complete data system with documentation should be delivered to
the customer by the end of the project.

Project Description and Goal

System Overview

Data Logging
Application

Data
Monitoring
Application

Database

DAQ
Device

Data Data

Tables, Views,
Stored Procedures
and Triggers

Desktop
Application Web Application

SQL Server Express

.NET Framework
Win Form

ASP.NET Core

Files

Data
Management
Application

Web
API

Data

Make Data available
to external systems

JSON
ASP.NET Core

Desktop
or Web ApplicationSensors

You can choose between the following DAQ systems:

• System #1: Logging Data from TC-01 Thermocouple
Temperature Sensor.

• System #2: Logging Data from different Sensors
(Temperature, etc.) using a USB-6008 DAQ device.

• System #3: Read and Log RFID Data.

• System #4: Logging Data from a Car using an OBD
module.

Select on of these Systems

System #1 (TC-01)

System #2 (USB-6008)

Temperature Sensor

Various Sensors

System #4 (OBD)

Hardware

System #3 (RFID)
RFID Reader

RFID Tags

• The system shall log and monitor values from different
Devices and Sensors.

• The sensors can be inside a building, inside a room,
inside a house or a factory, in a vehicle, etc. It can be
inside or outside.

• We can log temperature data or data from other sensors,
like air quality, humidity, vehicle data, etc.

• Start simple and then try to make the system more
flexible and general by adding more Tables, Classes, C#
code and improved GUI.

System Description

• Basic Data Security aspects of the system should be taken
care of.

• The system should typically include basic Data Security, such
as, e.g., Login using UserName and Password.

• You should make necessary considerations according to the
General Data Protection Regulation (GDPR).

• In the report you should discuss the Data Security aspects,
i.e., what you have implemented, but also other aspects that
are relevant for such a system (e.g., What weaknesses does
the system have? What can make the system more secure?
What about GDPR?).

Data Security

• Think about the Project Assignment as a small real-life industrial Project, and not
a set of tasks, exercises or a “School Assignment“.

• What does the company that hire you expect from you when you deliver this
project? What kind of Quality is expected?

• Try to see your work in a larger context than just an Assignment or a set of
exercises.

• Try to see the big picture. The tasks within the assignment are just small building
blocks that ends up with a fully working system.

• It is recommended that you make simple a Work Plan and a System Sketch that
gives you an overview of WHAT you should do and WHEN you should do it. Start
working on the Project Today! It is like a puzzle. You need to do it piece by piece.

• Practical Programming Skills: The only way to learn Programming is to do a lot of
coding by yourself, and not only small examples and code snippets with a few
lines of code. You need to make “large” Applications. It takes time and may be
demanding, but that's the only way! The reward is knowledge that goes deep,
and you will gain skills that are highly desired by the industry and work life.

Project Assignment Guidelines

• The Tasks described in the Project Assignment are somewhat loosely
defined and more like guidelines, so feel free to interpret the Tasks in
your own way with some Personalized touch.

• Feel free to Explore! Make sure to Add Value and Creativity to your
Applications!

• Try to Add Extra Value and be creative compared to the simplified
examples given by the supervisors, in that way you learn so much
more.

• Think Outside the Box!
• Just don't follow a recipe - Think like a Chef that makes his own

recipes. Add spices and ingredients and make it your own
• The reward is knowledge that goes deep, and you will gain skills that

are highly desired by the industry and work life.

Add Value!

Final Delivery (at the end of the semester) in Canvas:

Deliver 3 separate parts:

• Final Report (PDF)

• Video (MP4). Focus: Live Demonstration of the
System/Applications
– Note! The video is only a supplement to the report. It should be possible

to read the report and get a total overview of the system without seeing
the video. This means you also need to have screenshots of the
applications inside the report as well.

• Source Code (ZIP)

Deliveries

• Do you need Help? Want to Collaborate? Want to Discuss Technical Issues with Others?
Share Knowledge?

• Do you have Questions regarding the Project? We will use Microsoft Teams.

• In Microsoft Teams you can get help from one of the supervisors or from other students.
You can chat, have video meetings, ask questions, respond to questions, etc. Basically,
you can use Teams to communicate with the persons involved in this course.

• Very often someone else is wondering about the same as you - or perhaps someone else
has experienced the same thing and found a solution for the problem? Then post
information about this in the Teams room.

• Need help outside normal office hours? Perhaps a fellow student can help you if you ask
your questions here? For example, if you have installation problems, etc., a fellow
student can usually respond better than the supervisor can (outside scheduled hours,
evenings, weekends, etc.). You also learn a lot from helping each other.

• You can also use Microsoft Teams for collaboration with other students.

Microsoft Teams

System and
Hardware Overview

Industrial Datalogging and Monitoring

Table of Contents

System Overview

Data Logging
Application

Data
Monitoring
Application

Database

DAQ
Device

Data Data

Tables, Views,
Stored Procedures
and Triggers

Desktop
Application Web Application

SQL Server Express

.NET Framework
Win Form

ASP.NET Core

Files

Data
Management
Application

Web
API

Data

Make Data available
to external systems

JSON
ASP.NET Core

Sensors

DAQ System
(Different
Alternatives,
Select one)

Desktop
or Web Application

• System #1: Logging Data from TC-01
Thermocouple Temperature Sensor.

• System #2: Logging Data from different Sensors
(Temperature, etc.) using a USB-6008 DAQ device.

• System #3: Read and Log RFID Data.

• System #4: Logging Data from a Car using an OBD
module.

Systems

TC-01 Temperature
Thermocouple System

System #1

Table of Contents

System #1 (TC-01)

Data Logging
Application

Data
Monitoring
Application

Database

DAQ
Device

Data Data

Tables, Views,
Stored Procedures
and Triggers

Desktop
Application Web Application

TC-01

SQL Server Express

.NET Framework
Win Form

ASP.NET Core

Files

Data
Management
Application

Web
API

Data

Make Data available
to external systems

JSON
ASP.NET Core

Thermocouple Desktop or Web Application

System #1 – Hardware Overview

J Type Thermocouple Probe

Box

Device for connecting
the Sensor to the PC

USB A Cable

• TC-01 from National Instruments

• TC-01 can be used to read the Temperature
from the soundings

• You need to install the NI-DAQmx software
in order to be able to communicate with
the device from Visual Studio/C#

21

TC-01 Temperature Thermocouple System

22

J-Type Grounded Probe Thermocouple

TC-01

TC-01 Thermocouple

USB-6008
DAQ System

System #2

Table of Contents

System #2 (USB-6008)

Data Logging
Application

Data
Monitoring
Application

Database

DAQ
Device

Sensors

Actuators

Data Data

Tables, Views,
Stored Procedures
and Triggers

Desktop
Application Web Application

USB-6008

SQL Server Express

.NET Framework
Win Form

ASP.NET Core

TMP36

Light Sensor LEDs

AI
AI/DO

Files

Data
Management
Application

Thermistor

Web
API

Data

Make Data available
to external systems

JSON
ASP.NET Core

Desktop or Web Application

System #2 – Hardware Overview

USB A-B Cable

Plastic Box

NI USB-6008 DAQ Device

Pack with 10 Wires in different colors

Screwdriver

Breadboard

Bag with Sensors and
electronic components

• USB-6008 from National Instruments can be used to
acquire data from different types of Sensors

• You can, e.g., make a Home Automation System where
you have placed one or more such DAQ devices in
different rooms in your home and you have different
sensors attached to these DAQ devices

• USB-6008 has Analog and Digital Input and Output
Channels

• You need to install the NI-DAQmx software in order to
be able to communicate with the device from Visual
Studio/C#

USB-6008 DAQ System

27

USB-6008

Analog Channels
Digital Channels

• DAQ Device (USB-6008)

• Breadboard

• Wires

• Resistors

• Sensors and Actuators

Breadboard

USB-6008

Resistors

Wires

28

Hardware

Sensors*:

• TMP36

• Thermistor

• Light Sensor

Actuators

• LED

LEDs

Thermistor

TMP36 Sensor

*More Sensors can be used in addition if you want to make a larger system than the minimum required system

Light Sensor

29

Sensors and Actuators

RFID System

System #3

Table of Contents

System #3 (RFID)

Data Logging
Application

Data
Monitoring
Application

Database
Data Data

Tables, Views,
Stored Procedures
and Triggers

Desktop
Application Web Application

SQL Server Express

.NET Framework
Win Form

ASP.NET Core

Files

Data
Management
Application

Web
API

Data

Make Data available
to external systems

JSON
ASP.NET Core

USB RFID Reader

Desktop or Web Application

System #3a – Hardware Overview

RFID Reader with built-in Antenna

13.56MHz ISO 14443-A
(Mifare Classic 1k) Tags

System #3b – Hardware Overview

RFID Reader with built-in Antenna

USB-A to Mini-B Cable

125KHz Tags in different shapes

• You are going to read and log RFID Data
• It could be an inventory/library system for Tools,

CDs, DVDs, Books or other Equipment (you choose)
• Add, Edit, Delete Equipment in the inventory (Data

Management Application)
• Read RFID Tags and Log who borrows equipment,

etc. (Data Logging Application) using RFID
• Show Lending History and Statistics, etc. (Data

Monitoring Application)

RFID System

RFID System
RFID Reader RFID Antenna

RFID Tags

The RFID Reader is
typically a Microcontroller

The Antenna is typically integrated within the RFID Reader,
but you can also get external Antennas for better range

RFID Tags exist in many flavors and shapes

• RFID System is an abbreviation of Radio Frequency
Identification System.

• It is a system for identification of items
• It uses using wireless communication that transfer data

between Tags and the RFID Reader/Antenna
• We get RFID systems with different Frequencies

– LF (125KHz), HF (13.56MHz), UHF

• We have Active and Passive Tags.
– Passive tags are powered by energy from the RFID reader
– Active tags have a battery

RFID

R
FI

D
 R

e
ad

er
 E

xa
m

p
le

using System.IO.Ports;

SerialPort port = new System.IO.Ports.SerialPort("COM4", 2400, System.IO.Ports.Parity.None,
8, System.IO.Ports.StopBits.One);

port.Open();
port.DtrEnable = true;

int numberBytesToRead = 12;
byte[] data = new byte[numberBytesToRead];
port.ReadTimeout = 1000;
port.Read(data, 0, numberBytesToRead);

string rfidTag;
rfidTag = System.Text.Encoding.UTF8.GetString(data, 0, data.Length);

rfidTag = rfidTag.Replace("\n", "");
rfidTag = rfidTag.Replace("\r", "");

port.Close();

OBD Car System

System #4

Table of Contents

System #4 (OBD)

Data Logging
Application

Data
Monitoring
Application

Database
Data Data

Tables, Views,
Stored Procedures
and Triggers

Desktop
Application Web Application

OBD Module for self-
diagnostics in vehicles

SQL Server Express

.NET Framework
Win Form

ASP.NET Core

Files

Data
Management
Application

Web
API

Data

Make Data available
to external systems

JSON
ASP.NET Core

Desktop or Web Application

System #4 – Hardware Overview

PC
OBDII Interface ELM327 with USB

Car

Data Link Connector (DLC)

Please don't operate the
system while driving the
car. Create a system that

don’t need user interaction
while driving the car or
bring a friend that can

operate the system.

Price: appr. 150-300 NOK

OBD Vehicle Diagnostics Module

An OBDII Interface ELM327 with USB is
recommended for connection to your PC.

Bluetooth and Wi-Fi OBDII devices also
exist but those are more cumbersome to
connect to your PC and make an
Application in C#

https://estore.no/feilkodeleser/497-elm327-elm-327-obd2-usb-bildiagnostikk-feilkodeleser.html

https://estore.no/feilkodeleser/497-elm327-elm-327-obd2-usb-bildiagnostikk-feilkodeleser.html

• On-board diagnostics (OBD) is an automotive term
referring to a vehicle's self-diagnostic and
reporting capability.

• OBD systems give the vehicle owner or repair
technician access to the status of the various
vehicle sub-systems

• OBD implementations use a standardized digital
communications port to provide real-time data

• A standardized series of diagnostic trouble codes,
or DTCs, are also provided

• OBD-II is the latest standard used today
42

OBD Module

• On-Board Diagnostics, or “OBD”, is a computer-based
system built into all vehicles from 1996 or newer

• OBD systems are designed to monitor the performance
of some of an engine's major components including
those responsible for controlling emissions.

• In other words, OBD is the language of the Engine
Control Unit (ECU), and it was designed to help fight
emissions and engine failures.

• https://learn.sparkfun.com/tutorials/getting-started-
with-obd-ii/all

43

Getting Started with OBD

https://learn.sparkfun.com/tutorials/getting-started-with-obd-ii/all
https://learn.sparkfun.com/tutorials/getting-started-with-obd-ii/all

OBD Apps and Diagnostic Tools

These apps typically require a Wi-Fi or Bluetooth 4.0
(Bluetooth LE) OBD2 ELM327 compatible adapter
(device) to work.

You can use one of the many OBD Apps for your
Smartphone to get an overview of what kind of
data you can expect to read and get into your C#
Application

You may also get different
Diagnostic Tools

https://apps.apple.com/us/app/car-scanner-elm-obd2/id1259933623

https://estore.no/feilkodeleser/1943-can-obd-ii-feilkodeleser-ms300.html

https://apps.apple.com/us/app/car-scanner-elm-obd2/id1259933623
https://estore.no/feilkodeleser/1943-can-obd-ii-feilkodeleser-ms300.html

Database

Industrial Datalogging and Monitoring

Table of Contents

Here are some information that typically should be stored in the
Database for such as system (these are only suggestions; you specify your
own database structure):
• Login Information (typically UserName and Password)
• Information about the DAQ Device(s) (e.g., Name, Type, Vendor, etc.)
• Logging Information. How often shall you log data, etc.?
• Information about the Sensors (e.g., Name, Type, Vendor, Unit,

Accuracy, Resolution, Max/Min Limits, etc.)
• Measurement Data: Data from the Sensors (at least value and

date/time)
• Statistics (e.g., max, min, mean, standard deviation)
• Alarms/Limits: High and Low Temperature Alarm Limits

What should be stored in the Database?

• Install SQL Server Express and SQL Server
Management Studio (SSMS)

• Use SSMS to create the following (which should be
used in the C# applications)
– Create at least 5 Tables

– Create at least one View

– Create at least one Stored Procedure

– Create at least one Trigger (optional)

Database

ER Diagram Example

• Assume you have multiple logging devices in different buildings and
rooms (or different Cars for System#3)

• Assume you have different logging devices that have different types
and different numbers of sensors connected to it

• Assume you have different types of Sensors, like Temperature,
Pressure, etc. In addition, you can have different types or categories
of those, e.g., you have different types of Temperature sensors* like
thermistors, thermocouples, RTDs, Semiconductor based ICs.

• Do we need Login (UserName, Password, etc.) and User Access
(what kind of data should the different users have access to, who
should be allowed to edit or delete information, etc.)?

• E-Mail information (when alarms occur)

* https://www.digikey.com/en/blog/types-of-temperature-sensors

Database Tips & Tricks

https://www.digikey.com/en/blog/types-of-temperature-sensors

• Tables: Use upper case and singular form in table names – not plural, e.g.,
“STUDENT” (not students)

• Columns: Use Pascal notation, e.g., “StudentId”
• Primary Key:

• If the table name is “COURSE”, name the Primary Key column “CourseId”, etc.
• “Always” use Integer and Identity(1,1) for Primary Keys. Use UNIQUE

constraint for other columns that needs to be unique, e.g. RoomNumber
• Specify Required Columns (NOT NULL) – i.e., which columns that need to have

data or not
• Standardize on few/these Data Types: int, float, varchar(x), datetime, bit
• Use English for table and column names
• Avoid abbreviations! (Use RoomNumber – not RoomNo, RoomNr, ...)

Database - “Best Practice”

• It is strongly recommended that you keep all your
tables in a Table Script (Tables.sql). This Table
script can be generated from erwin Data Modeler.

• When creating Views and Stored Procedures you
should also create them in separate .sql files.

• Store all these files on your hard drive/OneDrive,
etc.

• In that way you can easily create a new database
with all the contents based on these .sql files.

Database Recommendations

Applications

Industrial Datalogging and Monitoring

Table of Contents

You shall create the following
Applications:

1. Data Management Application

2. Data Logging Application

3. Data Monitoring Application

C# Applications

1. Data Management Application
2. Data Logging Application
3. Data Monitoring Application
(They may be developed in random order or in parallel)

• The Database (SQL Server) and all C# applications should be running
on your personal computer. Please don’t use Microsoft Azure,
because that is something we will focus on in the course “Software
Engineering”

• Code structure: You can choose to have 3 different Projects in the
same Visual Studio solution or 3 different Visual Studio Solutions (or
both). Pros and Cons with these alternatives?

C# Applications

• Easier to develop 3 small applications than one large application (Module based development)
• Easier to share the development work if more than one developer
• Easier to find bugs and maintain the applications
• The applications are typically used by different people
• The applications uses different technology and frameworks (desktop, web)
• Data Logging App

– Needs to be robust and it needs to be a Desktop App (not a Web App) because it should be running 24x7 without interruption. The GUI is
not important because it should just be running without any interruption.

– You only need to install it on one computer, and it is only used by a System Administrator
– It needs to log data at specific intervals without any interruption
– When it is running (without bugs), you don’t need to touch it

• Data Management App
– Used by only the System Administrator or Super Users
– You use it to configure DAQ devices and sensors, when this is done, you typically only need it when you want to add more sensors or change

some of the information
– No “real-time” behavior is necessary (so a Web Application is a good choice here)

• Data Monitoring App
– Used by many users (End users). Easier to use web because you then don’t need to install it on many computers
– It needs to be easy to use/user-friendly/intuitive because it will be used by many people typically with little skills in computers
– No “real-time” behavior is necessary (so a Web Application is a good choice here)

Example: Microsoft Office is the name of the system. It consists of 3 Applications: Word, Excel and PowerPoint. Several
applications have been added later, like Project, Skype, Teams, etc. What would it look like if everything was baked into one large
application? Would it be user-friendly? Easy to use? Easy to develop? Easy to maintain? No!

Why 3 Applications?

Data Management
Application

Application #1

Table of Contents

57

A typical Data Management
Application implements the so-
called CRUD, i.e. this means it
Create, Read, Update and
Delete data from a Database

Read

Create
Update

Delete

Data Management Example

Data Management Example

Data Management Example

• Create a Windows Forms Application, or preferably an ASP.NET
Core Web Application

• It should be possible to show, insert and update information
about the DAQ Device(s) (e.g., Name, Type, Vendor, etc.)

• It should be possible to show, insert and update information
about the Sensors (e.g., Name, Type, Vendor, Unit, etc.)

• Set, e.g., Logging Interval, e.g., every minute or every 10. minute
• Set up what kind of sensors that are connected to a specific DAQ

device.
• Support for multiple DAQ devices in different rooms and

buildings?
• etc. These are just suggested features

Data Management Application

“ASP.NET Core CRUD Application” Example

https://halvorsen.blog/documents/teaching/courses/csharp/aspnet.php

Video (YouTube): https://youtu.be/k5TCZDwTYcE

You can see the video or/and
download the code for the entire
application and use it as a starting
point for your application

Data Management Application - Resources

https://halvorsen.blog/documents/teaching/courses/csharp/aspnet.php
https://youtu.be/k5TCZDwTYcE

Data Logging
Application

Application #2

Table of Contents

63

Data Logging Example

Data Logging Example

Data Logging Example

This Application reads
RFID Tags and save/store
relevant information to
the Database.

The User “tap” their
Access Card on the RFID
Reader in order to Login,
then they “tap” the
item(s) they want to
borrow/buy

Data Logging Application
• You should create a .NET WinForm Application (not .NET Core

WinForm, because NI-DAQmx does not support .NET Core?)
• Information about Logging, DAQ devices and Sensors should

be retrieved from the Database (read-only)
• Save data from sensors in a text file that should be opened,

viewed and plotted in Excel
• Save data (values) from sensors to SQL Server
• Alarms: If the Temperature is above a High limit, turn on the

red LED. If the Temperature is below a Low limit, turn on the
green LED (in System #1: in GUI only).

• What if logging is not working? How can the application
handle it? E.g., Send E-mail to System Administrator?

These are just suggested features

• Plot values from the different Sensor in one or
more plots/charts

• Logging data at specific intervals.
• Have different Light levels (Day, Night, etc.)
• See if you can present (and save) the Light value

from the sensor in Lux
• Create a nice User Interface
• Create proper icon(s) for your Forms, etc.
• Make an Executable Application

Not everything is relevant for all projects

Data Logging Application (cont.)

• Alarms: Send E-mail when alarms to a specific
person or person (that information should be
stored in the database)?

• Store Alarm information in the Database than
can be read by the Monitoring Application?

• Etc.

Data Logging Application (cont.)

Videos explaining how to use the DAQ devices TC-01 and
USB-6008

Videos explaining how to use the sensors, etc. like
Temperature sensors, Light sensors, LEDs, etc.

C# DAQ Videos (YouTube Playlist):
https://www.youtube.com/playlist?list=PLdb-
TcK6Aqj1z8onXRakywLpn7Tn7_Bti

Data Logging Application - Resources

https://www.youtube.com/playlist?list=PLdb-TcK6Aqj1z8onXRakywLpn7Tn7_Bti
https://www.youtube.com/playlist?list=PLdb-TcK6Aqj1z8onXRakywLpn7Tn7_Bti

https://en.wikipedia.org/wiki/Lux

Design a Luxmeter Using a Light
Dependent Resistor:
https://www.allaboutcircuits.com/projec
ts/design-a-luxmeter-using-a-light-
dependent-resistor/

Tip! Use a Lux App on your Smart Phone

Lux (System #2)

https://en.wikipedia.org/wiki/Lux
https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-resistor/
https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-resistor/
https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-resistor/

Data Monitoring
Application

Application #3

Table of Contents

72

Data Monitoring Example

Data Monitoring Example
Example of a Data Monitoring Application for lending Tools

The Application gives an overview id a Tool is
borrowed or not.
In addition, it shows Lending history, etc. Hilti Bosh Ryobi Laptop

Data Monitoring Application
• Create an ASP.NET Core Application
• Show latest data from the sensors
• Create one or more Charts that show the data from the

Sensors
• Show Statistics Data
• Possible to choose to see the temperature values in

Celsius or Fahrenheit
• Possible to view important information about the

sensors

These are just suggested features

“ASP.NET Core Chart” Example

Video (YouTube):
https://youtu.be/mksUls9fx-Q

You can see the videos or/and download the
code for the entire applications and use it as
a starting point for your application

“ASP.NET Core Database Communication” Example

Video (YouTube):
https://youtu.be/0Ta3dQ3rxzs

Data Monitoring Application - Resources

https://www.halvorsen.blog/documents/programming/web/aspnet

https://youtu.be/mksUls9fx-Q
https://youtu.be/0Ta3dQ3rxzs
https://www.halvorsen.blog/documents/programming/web/aspnet

• ASP.NET Core
• Make Data available to external systems
• JSON Format

You may also consider making a Web API that can be used
by your Data Logging Application. In that way you don’t
need a direct connection to your database, you instead use
the API as the middleware. This is a great benefit when
your Desktop Application and your Database is not on the
same computer (but located in a LAN or over Internet)

Web API (Optional)

UML

Industrial Datalogging and Monitoring

Table of Contents

• A Use Case Diagram for the system should be
created

• A Class Diagram for the system should be
created

• Se UML examples on the next pages

UML

Order
Food

The “circles” are called Use
Cases. They say what is the
main functionality of the
application. Here you typically
use verbs (e.g., OrderFood).

The small “persons” are
called Actors. They can be
real persons or a system.
The actors interact with
the system in some way.

A Use Case diagram is a representation of a user's interaction with the system

Use Case Diagram (Example)

80

Class Diagram Example

C# Code

Industrial Datalogging and Monitoring

Table of Contents

• Create 3 C# Applications:
1. Data Management App

2. Data Logging App

3. Data Monitoring App

• Create and use the main C# concepts like (in addition to If-else, For Loops and
While Loops, etc.)

– Classes with Constructors, Methods, Fields and Properties, Encapsulation,
etc.

– Inheritance

– Interfaces

• Create and use at least 5 Classes with necessary Methods and Properties

• Classes may be shared and used by the different applications, typically you
may want to create a Class Library (but that is optional)

C# Programming

• Typically, the Web Applications should have login for this
system

• The Namespace “Microsoft.AspNetCore.Identity”
contains functionality for Identity handling

• We can use the PasswordHasher<TUser> Class that has
the following Methods:
– HashPassword(TUser, String)

• Returns a hashed representation of the supplied password for the
specified user.

– VerifyHashedPassword(TUser, String, String)
• Returns a PasswordVerificationResult indicating the result of a

password hash comparison.

User Identity and Login in ASP.NET Core

passwordHashed = HashPassword(userName, password);

valid = VerifyHashedPassword(userName, passwordDB, password);

Store Hashed Password in the Database

Information given by User

Compare Hashed Password stored in the
Database with Password given by User in
Login Page

Create User and Login Example

Example:

using Microsoft.AspNetCore.Identity;
…
string username; //UserName given by user when creating a User
string passwordHashed;

PasswordHasher<string> pw = new PasswordHasher<string>();

passwordHashed = pw.HashPassword(userName, password);

Microsoft.AspNetCore.Identity

• Assume you have different types of sensors sharing
some common features, then you can, e.g., have a Base
Class called Sensor() and then other derived Classes like
TemperatureSensor(), etc. that either inherit or override
the functionality of the base class.

• If you have different types of Temperature Sensor, you
can make derived classes like Thermistor() that inherit/
override functionality of TemperatureSensor()

Inheritance is a feature of object-oriented programming languages that allows you to define a base class that provides
specific functionality (data and behavior) and to define derived classes that either inherit or override that functionality.

Inheritance (Examples)

Sensor

SensorName
SensorType

TemperatureSensor

ReadValue()
…

Thermistor

ReadValue()
…

RTD

ReadValue()
…

PressureSensor

ReadValue()
… Etc.

Etc.

ReadValue()
…

Etc.

Inheritance (Examples)

Class Sensor
{

…
…

}

Class TemperatureSensor : Sensor
{

…
…

} Class Thermistor : TemperatureSensor
{

…
…

}

…
Thermistor thermsitor1 = new Thermistor();
temperturevalue = thermsitor1.ReadValue();

Inheritance (Examples)

Class TemperatureSensor
{

public virtual double y Scaling(double x)
{

y = 5*x;
}
…

}

Class Thermistor : TemperatureSensor
{

public override double y Scaling(double x)

{
y = 2*x + 2;

}
…

}

Class Tmp36 : TemperatureSensor
{

public override double y Scaling(double x)

{
y = x*(9/5) + 45;

}
…

}

The override modifier allows a method
to override the virtual method of its base
class at run-time.

…
N = //Get number of sensors stored in the Database
TemperatureSensor[] tempsensor = new TemperatureSensor[N]

//Here you should use a for loop instead
tempsensor[0] = new TemperatureSensor()
tempsensor[1] = new Thermistor()
tempsensor[2] = new Tmp36()

foreach (Temperature sensor in tempsensor)
{

x = //Get Value from DAQ device
y = sensor.Scaling(x); //Scale the value
SaveData(x); //Save Data to the Database

}

Here, depending of the Sensor, different Scaling formula will be used

Polymorphism (Examples)

• Assume you make this system as an open
platform meaning other developers can use it to
add logging functionality from other sensors.

• The system will not work if they don’t implement
a Name for the Sensor and a ReadValue()
method

• To make sure that they follow this, you should
implement Interfaces

Interfaces are used along with classes to define what is known as a contract. A contract is an agreement on what the
class will provide to an application.
An interface declares the properties and methods. It is up to the class to define exactly what the method will do.

Interfaces (Examples)

public interface ISensorType
{

…
…
public double ReadValue (int id);

}

public class Rain : ISensorType
{

…
public double ReadValue (int id)
{

double value;
value = ReadDaq(id);
return value*(9/5) +32;

}
}

Interface Example: A Class that Implements the Interface

Interfaces (Examples)

Final Delivery

Industrial Datalogging and Monitoring

Table of Contents

1. Technical Report (PDF)
– Introduction, Methods, Results, Discussions and

Conclusions (IMRaD). See “Report Checklist” for details

2. Video (MP4). About 5minutes
1. Short Overview of System
2. Real-life Demonstration of the Prototype
3. Short overview of the main Code Structure

3. Code (C# + DB Scripts) as ZIP File

Individual Delivery! 93

Delivery (in Canvas)

Note! The Report and the Video should be independent of
each other, meaning it should be possible to get an overview

of the system either you read the report or watching the video

Technical Report
• The IMRaD structure is a way of structuring a

scientific report or article

• IMRaD is short for Introduction – Methods –
Results – and – Discussion (and Conclusions)

• IMRaD is a way of structure the contents. It may
not necessary be the names of the chapters within
the report, but more the different sections that
need to be in such a report and the order and the
presentation of the contents

https://sokogskriv.no/en/writing/the-imrad-format.html#introduction

https://sokogskriv.no/en/writing/the-imrad-format.html

• Microsoft Azure (you shall use your personal computer
only)

• Source Code Control Systems (like GitHub)
• Make detailed project plans and other documentation

In this Project, Programming is in focus

The topics above are important in the course “Software
Engineering”

In this project you shall NOT use/make

❑ erwin Data Modeler is installed and used on
your PC

❑ SQL Server Express is installed and used on
your PC

❑ Visual Studio is installed and used on your
PC

❑ Simple Use Case Diagram (s)
❑ Data Logging Application
❑ (Data Management Application)
❑ Data Monitoring Application
❑ Database > 5 Tables
❑ Simple Database Diagram (ER)
❑ Stored Procedure(s)
❑ Database View(s)
❑ (Database Trigger(s)) Optional

❑ Class Diagram
❑Made >5 Classes
❑ Use of Inheritance (some places)
❑ Use of Polymorphism (some places)
❑ Use of Interfaces (some places)
❑ Try-Catch (some places) is used to make
the code more robust
❑ (Class Library) Optional

❑ (Web API) Optional

❑ Report is delivered
❑ Video (about 5 min) is delivered
❑ Code as ZIP File is delivered

Project Checklist (Recommendations)

Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: hans.p.halvorsen@usn.no

Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

	Start
	Slide 1
	Slide 2
	Slide 3

	Introduction
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

	System Overview and Hardware
	Slide 15
	Slide 16
	Slide 17

	System1
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

	System2
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

	System3
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

	System4
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

	Database
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

	Applications
	Slide 52
	Slide 53
	Slide 54
	Slide 55

	Data Management Application
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

	Data Logging Application
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

	Data Monitoring Application
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

	UML
	Slide 77
	Slide 78
	Slide 79
	Slide 80

	Code
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

	Delivery
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

	Finished
	Slide 97

